

南京招品微电子有限公司

NanJing Top Power ASIC Corp.

数据手册 DATASHEET

TP5200 1A升压双串锂电池 充电IC

www.toppwr.com 1 REV_1.1

概述

TP5200是一款开关升压型双串8.4V锂电池充电管理芯片。其ESOP8的封装以及简单的外围电路,使得TP5200非常适用于便携式设备的大电流充电管理应用。

TP5200对电池充电分为涓流预充、恒流、恒压三个阶段,恒流充电电流可通过外部电阻调整。TP5200内置功率PMOSFET,同步外置NMOS管,同步开关结构使其具有极少的外围器件,有效减少方案尺寸,降低BOM成本。

特性

- 同步开关升压充电
- 升压充电效率90%
- 外部可编程充电电流, 0.1A--1A
- 电源自适应功能,可适用太阳能适配器
- 红绿LED充电状态指示
- 芯片温度保护,过流保护,过压保护等
- 电池短路保护
- 开关频率650KHz
- 小于1%的充电电压控制精度
- 涓流、恒流、恒压三段充电,保护电池
- 采用ESOP8封装

绝对最大额定值

- 静态输入电源电压 (VIN): 20V
- BAT: 0V~16V
- BAT 短路持续时间: 连续
- 最大结温: 120℃
- 工作环境温度范围: -20℃~85℃
- 贮存温度范围: -30℃~125℃
- 引脚温度 (焊接时间 10 秒): 260℃

应用

■ 双节锂电池/锂离子电池充电

典型应用电路

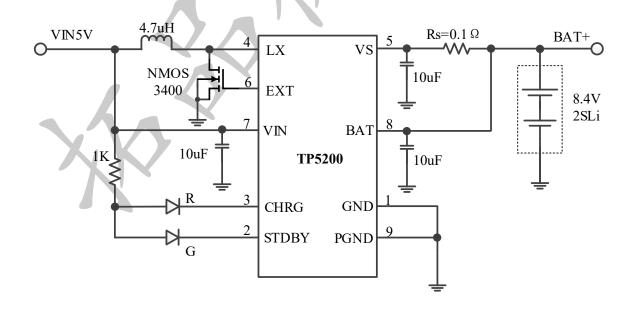
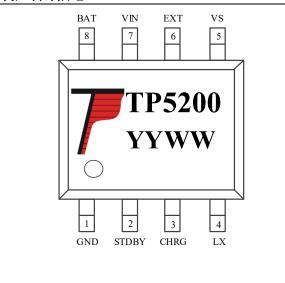
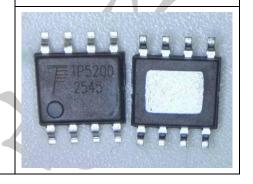



图 1 TP5200 为 8.4V 双串锂离子电池 1A 充电应用示意图

封装/订购信息


订单型号

TP5200-ESOP8

器件标记

TP5200

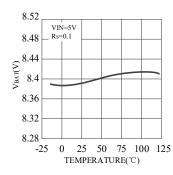
实物图片

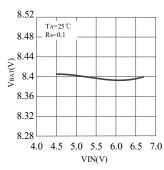
ESOP8 封装顶视图 (散热片为 GND 引脚)

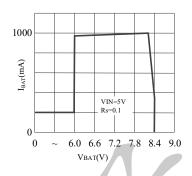
引脚定义

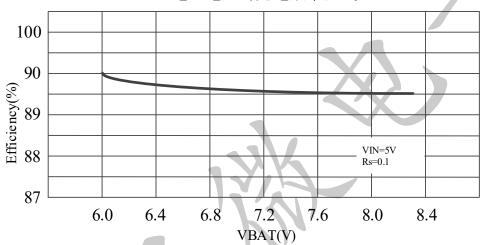
引脚名称	引脚序号	引脚定义			
GND	1	系统地			
STDBY	2	充满指示灯引脚			
CHRG	3	充电指示灯引脚			
LX	4	同步升压开关节点,连接电感			
VS	5	输出电流检测的正极输入端,与 BAT 端接 Rs 电阻,设置充电电流			
EXT	6	外置 NMOS 栅极输入引脚			
VIN	7	输入供电引脚			
BAT	8	电池电压检测引脚			
PGND	9/EPAD	功率地			

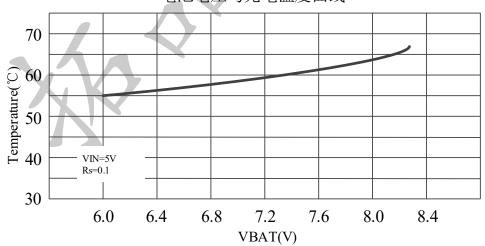
电特性


表1 TP5200电特性能参数


除特别说明,只TA=25℃, VIN=5V。


符号	参数	条件	MIN	TYP	MAX	单位
VIN	输入电源电压		4.5	5	6.5	V
I_{CC}	输入电源电流	待机模式(充电终止) 停机模式	100 100	120 120	140 140	μA μA
V _{FLOAL}	充电截止电压	8.4V 锂离子电池	8.316	8.4	8.484	V
	BAT 引脚电流:	Rs=0.1Ω,恒流模式	900	1000	1100	mA
I_{BAT}	(恒流模式测试条件是电	待机模式,V _{BAT} =8.4V	0	-20	-22	μΑ
	池=7.8V)	VIN=0V, V_{BAT} =8.4V	0	-1	-1	μΑ
I _{TRIKL}	涓流预充电电流	Rs=0.1Ω	100	200	300	mA
F	振荡频率		550	650	750	KHz
Dmax	最大占空比			100%		
Dmin	最小占空比		0%			
V_{TRIKL}	涓流充电门限电压	Rs=1Ω, V _{BAT} 上升	5.8	6.0	6.2	V
V _{TRHYS}	涓流充电迟滞电压		550	600	650	mV
Vovp	VIN过压闭锁门限	从VIN低至高	7.1	7.3	7.5	V
Vovphys	VIN过压闭锁迟滞	13//	80	140	200	mV
Vadpt	VIN自适应电压		4.2	4.35	4.5	V
V_{UV}	VIN欠压闭锁门限	从VIN低至高	3.8	4.0	4.2	V
V _{UVHYS}	VIN欠压闭锁迟滞		30	50	70	mV
V _{CHRG}	CHRG 引脚输出低电压	I _{CHRG} =3mA		1.5	1.8	V
V_{STDBY}	STDBY 引脚输出低电压	I _{STDBY} =3mA		1.5	1.8	V
ΔV_{RECHRG}	再充电电池门限电压	V _F LOAT-V _{RECHRG}	100	150	200	mV
TLIM	芯片保护温度			145		$^{\circ}\!\mathbb{C}$
t _{RECHARGE}	再充电比较器滤波时间	V _{BAT} 高至低	0.8	1.8	4	mS
t_{TERM}	终止比较器滤波时间	I _{BAT} 降至C/10以下	0.8	1.8	4	mS


典型性能指标



电池电压与充电效率曲线

电池电压与充电温度曲线

工作原理

TP5200 是专门为双串 8.4V 锂离子电池而设计的开关型充电器芯片,利用芯片内部的功率晶体管对电池进行涓流、恒流和恒压充电。充电电流可以用外部电阻编程设定,最大持续充电电流可达 1A。 TP5200 包含两个漏极开路输出的状态指示输出端,充电状态指示端 CHRG 和电池充满状态指示输出端 STDBY。芯片内部的功率管理电路在芯片的结温超过 120℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当输入电压大于芯片启动阈值电压和 芯片使能输入端接高电平, TP5200 开始对 电池充电, CHRG 管脚输出低电平, 表示 充电正在进行。如果双串锂离子电池电压 低于 6V, 芯片进行的是涓流充电模式, 这 种模式就是充电器用小电流对电池进行涓 流预充电,电流为恒流充电电流的20%。 当电池电压超过 6V 后,芯片将进入开关 恒流充电模式,恒流充电电流由 VS 管脚 和 VBAT 管脚之间的电阻确定。当双串锂 离子电池电压接近 8.4V 时, 距离充电截止 电压约 50mV (根据不同的电路连接电阻 与电池内阻电压不同), 充电电流逐渐减 小, TP5200 进入恒压充电模式。当充电电 流减小到截止电流时, 充电周期结束, CHRG 端输出高阻态, STDBY 端输出低电 位。当电池电压降到再充电阈值时,自动 开始新的充电周期。芯片内部的高精度的 电压基准源, 误差放大器和电阻分压网络 确保电池端截止电压的精度在±1%以内, 满足了锂离子电池的充电要求。当输入电 压掉电, 充电器进入低功耗的停机模式, 电池从芯片的漏电接近 1μA。

充电电流设置

电池充电的电流I_{BAT}由外部电流检测电阻Rs确定,Rs可由该电阻两端的调整阈值电压Vs和恒流充电电流的比值来确定,恒流状态下Rs两端的电压为 100mV。

设定电阻器和充电电流采用下列公式来计算:

$$R_{\scriptscriptstyle S} = rac{0.1 V}{I_{\scriptscriptstyle BAT}}$$
(电流单位 A,电阻单位 Ω)

举例:

需要设置充电电流 1A,带入公式计算得 $Rs=0.1\Omega$

表 2 给出了一些设置不同电流对应的 Rs 电阻,方便快速设计所需电路。

表 2: Rs 及其对应的恒流充电电流

TEE SOUTH THAT IN TORSE IT IN THE					
$\operatorname{Rs}(\Omega)$	$I_{BAT}(mA)$				
1	100				
0.5	200				
0.2	500				
0.1	1000				

充电终止

恒压阶段,当充电电流降到最大恒流值的 1/10 时,充电循环被终止。该条件是通过采用一个内部滤波比较器对 Rs 的压降进行监控来检测的。当 Rs 两端电压差至10mV 以下的时间超过 t_{TERM} (一般为1.8ms)时,充电被终止。充电电流被关断,TP5200 进入待机模式,此时输入电源电流降至 120μA,电池漏电流流出约 1μA。

在待机模式中,TP5200 对 BAT 引脚电压进行连续监控。如果双串锂离子电池该引脚电压降到 8.25V 的再充电电门限 V_{RECHRG} 以下,则新的充电循环开始并再次向电池供应电流。

充电状态指示器

TP5200 有两个漏极开路状态指示输 出端, CHRG 和 STDBY。当充电器处于充 电状态时, CHRG 被拉到低电平, 在其他 状态, CHRG 处于高阻态。当不用状态指 示功能时,可将不用的引脚连接到地。

表 3: 充电指示状态

绿灯 STDBY	红灯 CHRG	充电状态
灭	亮	正在充电状态
亮	灭	电池充满状态
灭	灭	欠压,过压状态
绿灯亮,	红灯闪烁	BAT端接10u电容, 无电池待机状态

芯片内部热限制

如果芯片温度试图升至约 120℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流。该功能可防止 TP5200过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏 TP5200 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

输出短路保护

TP5200 当输出端电压低于约 1.5V, 芯片进入短路保护模式, 芯片输出电流限流为最大峰值电流的 25%约 250mA。

欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在 Vin 升至欠压闭锁门限以上之前使充电器保持在停机模式。

热考虑

由于 ESOP8 封装的外形尺寸较小, 大电流应用中散热效果不佳可能引起充电 电流受温度保护而减小。建议芯片底部散 热片与 PCB 覆铜连接,底部散热片必须接 地,不可接其他电位。采用一个热设计精 良的 PCB 板布局以最大幅度地增加可使 用的充电电流。

电感选择

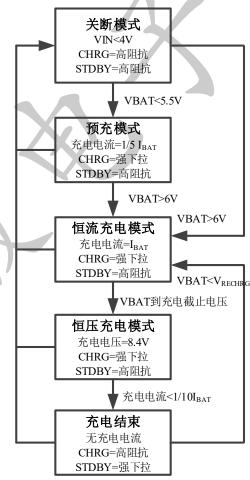
为了保证系统稳定性,在预充电和恒流充电工作阶段,系统需要保证工作在连续模式(CCM)。电感取值 2.2uH-10uH,推荐使用推荐 4.7uH。

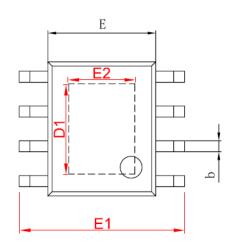
电感额定电流选用大于充电电流,内

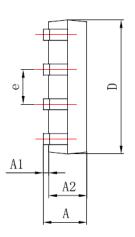
阻较小的功率电感。

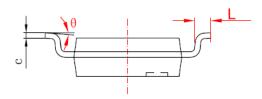
自动再启动

一旦充电循环被终止,TP5200 立即采用一个具有 1.8mS 滤波时间($t_{RECHARGE}$)的比较器来对 BAT 引脚上的电压进行连续监控。当电池电压降至电池容量的 90%以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态。在再充电循环过程中,CHRG 引脚输出重新进入一个强下拉状态。



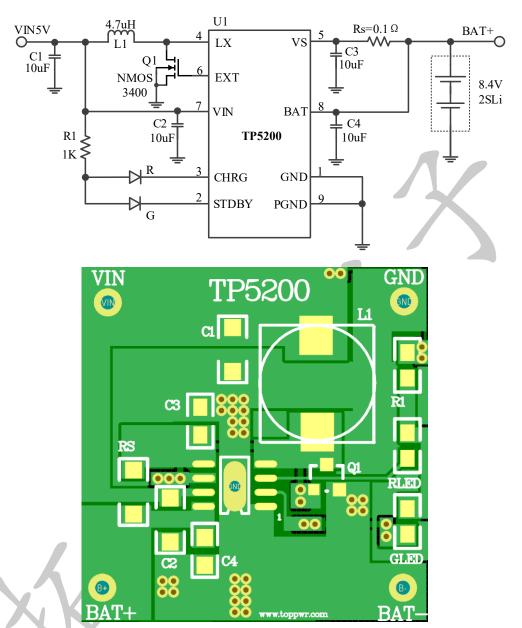

图 2 一个典型锂离子电池充电循环状态


冬



封装描述

8 引脚 ESOP 封装 (单位 mm)



<i>⇔ *</i> /r	Dimensions Ir	Millimeters	Dimensions In Inches		
字符	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 050	0. 150	0. 004	0. 010	
A2	1. 350	1.550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0. 091	0. 099	
е	1. 270 (BSC)		0. 050	(BSC)	
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

www.toppwr.com 8 REV_1.1

TP5200 应用指导电路

元器件	型号&规格	位号	数量	备注
充电芯片	TP5200-ESOP8	U1	1	芯片底部散热片接地
电感	4.7uH-0630	L1	1	
贴片电容	10uF/0805/ <mark>16V</mark>	C1/C2	2	C2C3C4都应尽量靠近芯片对应的引脚放
贴片电容	10uF/0805/ <mark>25V</mark>	C3/C4	2	置,越近越好; C1 靠近电感放置
MOS 管	NMOS/SOT23-3/3400	Q1	1	V_{GS} >25 V / I_D >3 A
贴片电阻	0.1Ω/ <mark>1206</mark> /1%	Rs	1	
贴片电阻	1K/0805	R1	1	调节 LED 灯工作电流
红绿 LED(贴片)		R/G	2	

www.toppwr.com 9 REV_1.1

南京拓品微电子有限公司 NanJing Top Power ASIC Corp.

使用注意事项

- 1. 电路中电容都应尽量靠近芯片对应的引脚放置,越近越好,布局时与芯片同一层。
- 2. 若客户电源输入走线较长,建议在Boost电路系统(电感)前加焊电容(C1),来减小寄生电感对充电系统的影响。
- 3. 电感请选用电流能力足够的功率电感。
- 4. 对于VIN-LX-VS-BAT-GND通过电流的回路,其走线应比普通信号线更宽。MOS管的GND与芯片PGND连接好,确保回流路径最短。
- 5. 注意各电容接地线节点位置,应尽量使接地点集中,良好接地。
- 6. IC芯片底部散热片(焊盘即PGND)需接地,并通过多个通孔与背部铜皮相连,背部铜皮应做到最大面积来给予散热,保证系统不会过热,稳定工作。

版本历史

日期	版本说明		版本号
2025.6.10	第一版	/X > >	REV_1.0
2025.11.18	增加应用指导电路,	移除电池温度保护功能	REV_1.1

